PTS:
00:00 00

1. Pick up your test.
2. Hand in your boxes.
3. Find the vertical asymptotes and/or holes in the function: $\frac{4 x}{x^{3}-x}=\frac{4 x}{x\left(x^{2}-1\right)}=\frac{4 \sqrt{x}}{x(x+1)(x-1)}$

Domain: $\mathbb{R}, x \neq 1,-1,0$

$$
\begin{aligned}
& \text { VA.: } \quad x=1, x=-1 \\
& \text { Holes: }(0,-4) \frac{4}{(x+1)(x-1)} \\
& =\frac{4}{1 \cdot(-i)}=-4
\end{aligned}
$$

Objective: To be able to determine the behaviour of rational functions as they approach + or - infinity.

Agenda:

1. PTT
2. Unit overview
3. Lesson 6-3
4. Work time on A6-3

TOPIC: RATIONAL FUNCTIONS AND END BEHAVIOR
Horizontal Asymptotes (HA):
. $f(x)-\frac{3}{2 x+4}$ What is the end behavior of $f(x)$?

\mathbf{x}	$f(x)$
-10	-0.188
-100	-0.015
-1000	-0.002
-10000	-0.000

As $x \rightarrow-\infty$

x	$f(x)$
10	0.188
100	0.015
1000	0.002
10000	0.000

The line $y=c$ is a horizontal asymptote of $f(x)$ if as $x \rightarrow-\infty$ or ∞, $\mathrm{f}(\mathrm{x}) \rightarrow \mathrm{c}$.

As $x \rightarrow-\infty$ or $x \rightarrow \infty, f(x) \rightarrow 0$
Conclusion: $y=0$ is a H.f. of $f(x)$
Analyze the end behavior of each of the following rational functions and then write in proper rational form.

$$
\begin{aligned}
& \text { 2. } f(x)-\frac{3 x}{1 x+2} \\
& \text { As } x \rightarrow-\infty \\
& \text { AS } x \rightarrow \infty \\
& f(x) \rightarrow 3 \\
& f(x) \rightarrow 3
\end{aligned}
$$

As $x \rightarrow-\infty$ or $x \rightarrow \infty, f(x) \rightarrow 3$
conclusion 3 is a $\overrightarrow{H 1 . A,}$ if $f(x)$.

Memory Trick for HA: Bobo Both Eatdc,

* Bigger on bottom - zero
* Bigger on top - none
* Exponents are the same -divide coefficients
- If there are no HA (both), then factor and cancel (if possible) and graph what is remaining, or use long division to find the slant asymptote. The long division will produce a linear equation (ignore the remainder), which will be the equation of the asymptote.
* You will never have both a HA and an SA together

Slant Asymptote (SA):
3. $f(x)=\frac{x^{2}-2}{x+2} \quad \begin{array}{lll}\partial \log & 2\end{array} \rightarrow n \in H . A$.

x	$f(x)$
-10	-12.25
-100	-102
-1000	-1002
-10000	-10002

x	$f(x)$
10	8.167
100	98.020
1000	998
10000	9998

$$
\begin{aligned}
& A_{5} x \rightarrow-\infty \\
& f(x) \rightarrow-\infty \\
& f(x) \rightarrow \infty
\end{aligned}
$$

Does $f(x)$ have a horizontal asymptote? NO
Graph $f(x)$ and $y=x-2$ in the same window. Notice the end behavior of $f(x)$. The line $y=x-2$ is called a slantosymptote.

$$
\begin{aligned}
& \text { As } x \rightarrow-\infty \text { or } x \rightarrow \infty, f(x) \rightarrow \frac{x-2}{\text { is } a S . A} \\
& \text { Conclusion: } y<x-2
\end{aligned}
$$

Determine the end behavior (HA or SA) of the following rational functions. Confirm with your graphing calculator.
$\begin{aligned} \text { 4. } f(x)=\frac{-4}{2 x+1} & \text { deg top:. O } 5 . \\ & \text { deg bottom: 1 }\end{aligned}$
reg top: 2
BOB
BOT

End Behavior: $H, A, y=0 \quad$ End Behavior: S.A.
 deg top:1 deg b: 2 EATS DC exponents are the same $B O B O$ $\frac{-4}{2}$

End Behavior: $H, A, y=-2$ End Behavior: $A, A, y=0$

Find the domain, holes, and asymptotes of the following rational functions.

Classwork/homework:

$$
\begin{array}{r}
\text { Classwork/homework: } \\
\text { A6-3 please file } \\
\text { tests }
\end{array}
$$

Reminders:
Quiz on 6-1 to 6-3 Friday!

